
Gladius Documentation
Release 0.2.0

Mozilla Foundation

August 03, 2012





CONTENTS

i



ii



Gladius Documentation, Release 0.2.0

Gladius is a 3D game engine, written entirely in JavaScript, and designed to run in the browser. We leverage existing
web technologies whenever possible and where gaps exist in support for games, we develop new solutions.

The engine consists of a core set of functionality that is common to all games and simulations like the game loop,
messaging, tasks and timers. Common components like the spatial transform are also provided by the core. More
specialized funcionality, like graphics or physics, is encapsulated into engine extensions that are designed to run on
top of the core. A common set of extensions is maintained as part of this project, and support for third-party extensions
is a strong design objective.

CONTENTS 1



Gladius Documentation, Release 0.2.0

2 CONTENTS



CHAPTER

ONE

ENGINE OVERVIEW

1.1 Engine Layout

Gladius is comprised of several modules, almost all of which are implemented as extensions:

• gladius-core provides the core functionality of the engine.

• gladius-input provides player input functions.

• gladius-cubicvr provides 3d rendering capabilities using the cubicvr library.

• gladius-box2d provides physics via the box2d library.

1.2 Components, Entities, and Spaces, Oh My!

Gladius uses an Entity-Component system to model the game world. In other words, behaviors, such as rendering
graphics, computing physics, and playing sound, are defined by components. An entity is a collection of components,
and represents something in the game world. A space is a collection of entities.

Components both perform some function and contain the state for that function. Entities are nothing more than dumb
containers that manage their components, and don’t carry any state. Components can be configured and swapped
around between entities.

1.3 The Game Loop

The game loop in Gladius is split into three phases: input, update, and render.

The input phase is for reading input from various devices, including the keyboard, mouse, gamepads, etc. The
gladius-input extension provides a set of input devices and convenient plumbing for retrieving the input state.

The update phase is for updating game state. This includes calculating movement, applying physics, performing
collision checks, and other core game logic. During this phase he updater service provided by gladius-core will
trigger an updateevent on every registered component.

The render phase is when graphics are actually rendered to the screen. Typically extensions like
gladius-cubicvr will handle this phase.

3



Gladius Documentation, Release 0.2.0

1.4 Services

A service is a collection of tasks that will be run during the game loop. A task is a function that is associated with a
game loop phase and a set of tags. These tags are used to resolve dependencies between tasks; several tasks can be
under a physics tag, while another task can depend on the physics tag so that it does not execute until all the
physics tasks are complete.

4 Chapter 1. Engine Overview



CHAPTER

TWO

EXTENSIONS OVERVIEW

Gladius features an extension system that allows libraries to be created that easily integrate with the engine and provide
new functionality that the core library does not provide.

An extension is a collection of three types of items: components, resources, and services.

2.1 Components

Components are chunks of functionality and state that can be attached to entities. The cubicvr extension, for
example, provides a model component that contains both the data for displaying a 3d model and logic to help render
it. In order to render an entity to the screen, you attach a model component to the entity and configure it to the model
you want displayed.

Components can also respond to events. If a component has an onX function (where X is replaced with the event type),
the function will be called when an event with a matching type is dispatched to the component.

Components can depend on other components in order to function. When a component is added to an entity that does
not have other components that it depends on, an error is thrown.

2.2 Resources

Resources are types of data that generally don’t change and are shared among several entities. This includes things
like 3d models, textures, sounds, etc. Extensions don’t define individual resources, but instead define functions that
can load resources. The cubicvr extension defines resources for things like light definitions and meshes.

A resource provided by an extension is a function that takes in a piece of data and produces some type of resource.
This data is typically retrieved via an XMLHttpRequest, although this behavior can be customized. The returned
data is passed to the resource constructor.

2.3 Services

Services are lists of tasks that are executed during the game loop. Each task in a service defines which phase of
processing it takes part in: input, update, or render. Tasks can also define dependencies between eachother, so that
tasks that require other tasks to be complete can be scheduled correctly. For example, the cubicvr extension defines
a render task, tied to the render phase, which handles rendering entities in 3d space.

5



Gladius Documentation, Release 0.2.0

6 Chapter 2. Extensions Overview



CHAPTER

THREE

INDICES AND TABLES

• genindex

• modindex

• search

7


